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We compute the flow about an oblate spheroidal bubble of prescribed shape set fixed
in a viscous linear shear flow in the range of moderate to high Reynolds numbers. In
contrast to predictions based on inviscid theory, the numerical results reveal that for
weak enough shear rates, the lift force and torque change sign in an intermediate range
of Reynolds numbers when the bubble oblateness exceeds a critical value that depends
on the relative shear rate. This effect is found to be due to the vorticity generated
at the bubble surface which, combined with the velocity gradient associated with
the upstream shear, results in a system of two counter-rotating streamwise vortices
whose sign is opposite to that induced by the classical inviscid tilting of the upstream
vorticity around the bubble. We show that this lift reversal mechanism is closely
related to the wake instability mechanism experienced by a spheroidal bubble rising
in a stagnant liquid.

1. Introduction
Bubble distribution and associated modifications of the microstructure in gravity-

driven bubbly flows are of great importance in many geophysical and industrial
processes. In a large number of cases, a crucial ingredient in the evolution of this
distribution is the lateral or lift force acting on bubbles rising in shear flows. For
instance, depending on the direction along which bubbles preferentially migrate and
accumulate in wall-bounded shear flows, wall transfers (i.e. friction and heat or mass
flux) can be strongly affected (Serizawa, Kataoka & Michiyoshi 1975). Thanks to
various detailed experimental and computational studies, the inertial migration of
nearly spherical bubbles in such flows is now fairly well understood (e.g. experiments
by van Nierop et al. 2007 and computations by Legendre & Magnaudet 1998).
The situation is much less satisfactory with larger bubbles whose shape strongly
departs from sphericity. Indeed, it has been repeatedly reported in the literature, both
from experiments (Kariyasaki 1987; Tomiyama et al. 2002) and computations (Ervin
& Tryggvason 1997; Sankaranarayanan & Sundaresan 2002), that the direction
of migration of such bubbles in a given shear flow reverses when their size, and
hence their deformation, exceeds some critical value. Similar findings were recently
reported in turbulent bubbly boundary layers (Tran-Cong, Marié & Perkins 2008),
although in this case large-scale turbulent structures and near-wall effects may be
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Figure 1. Sketch of the flow configuration.

partly responsible for the observed behaviour. This intriguing reversal migration
phenomenon is at odds with predictions provided by inviscid theory, according to
which, in a given shear flow, the lift force on an oblate spheroidal bubble has the same
sign as that experienced by a spherical bubble (Naciri 1992). In this approximation, the
generation of the lift force entirely grounds on the distortion of the upstream vorticity
around the bubble. Nevertheless, this view completely neglects the existence and effect
of the vorticity produced right at the bubble surface by the shear-free condition. As
it is now recognized that this surface vorticity is at the root of the generation of
the transverse force that leads to zigzag and helical paths of high-Reynolds-number
bubbles rising in still liquid (Mougin & Magnaudet 2002; Magnaudet & Mougin
2007), it is important to understand how it interacts with the upstream vorticity and
whether this interaction is capable of producing the observed lift reversal. This is the
purpose of the present paper in which the above problem is studied by means of
direct numerical simulation (DNS).

2. Statement of the problem
We consider an oblate spheroidal bubble with a prescribed shape characterized

by the lengths b and a of the major and minor semi-axis, respectively. The bubble
is maintained fixed in a linear shear flow whose upstream velocity in the Cartesian
frame of reference centred at the bubble centroid is (figure 1),

U∞ = (U0 + αy)ex. (2.1)

Since the gas that fills the bubble has a negligible viscosity and the gas–liquid interface
is assumed to be free of any surfactants, the liquid obeys a zero shear condition at
the bubble surface.

The problem is described by three dimensionless numbers, namely the Reynolds
number Re =2bU0/ν, the dimensionless shear rate Sr = 2αb/U0 and the bubble aspect
ratio χ = b/a, where ν is the kinematic viscosity of the surrounding liquid. In what
follows, we explore the bubble response over a wide range of these three parameters,
i.e. Re ∈ [50, 4000] , Sr ∈ [0, 0.2] , χ ∈ [1.0, 2.7]. Note that the so-called equivalent
radius of the bubble is Req = (ab2)1/3 = bχ−1/3. Therefore, with the above definition
of Re and Sr , when any of them is kept fixed for increasing χ , the bubble volume
V =4/3πR3

eq is decreasing as χ−1.
The total force F acting on the bubble is decomposed into drag and lift components,

the latter of which is defined as FL = F0ey = 4
3
CLπab2ραU0, where ρ is the liquid

density and CL is the lift coefficient. This definition stems from the fact that in the
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Figure 2. Detail of the grid (χ =2.25).

inviscid approximation and in the weak shear limit Sr � 1, an axisymmetric body
of volume V whose axis is aligned with the upstream flow experiences a lift force
proportional to ρV αU0 (see Auton 1987 and Auton, Hunt & Prud’homme 1988 for
more insight into the origin of this definition). Owing to the shear orientation, the
torque Γ experienced by the bubble is oriented along the ez direction and is expressed
in the form Γ0ez = 1

2
CT πb4ραUo, where CΓ is the torque coefficient. All numerical

results discussed later are presented using the above dimensionless coefficients.
Of course the assumption that the bubble shape may be reasonably well

approximated as an oblate spheroid puts some restriction on the parameter range
in which the present study is relevant. Bubbles rising in a low-viscosity liquid at
rest at infinity are known to adopt approximately oblate spheroidal shapes when
their rise Reynolds number is typically in the range O(102 − 103) while their Weber
number We = ρU 2

0 b/σ is of O(1), σ denoting surface tension. In presence of shear,
this approximation remains relevant only in situations where the Weber number based
on the inertia effect resulting from the coupling of slip and shear, i.e. WeSr , and that
based on nonlinear shear effects, i.e. WeSr2, are both much smaller than unity. To
ensure that both conditions are satisfied, we assume in what follows that We = O(1)
and Sr � 1; this is why the largest shear rate we consider in most of the paper is
Sr = 0.2.

3. Numerical tool and validation
The computations reported below were carried out with the JADIM code

thoroughly described in several of our previous publications. In particular, we used
this code to compute the lift force acting on a spherical bubble moving in a viscous
linear shear flow (Legendre & Magnaudet 1998), and to analyse the physical processes
governing the wake instability of a fixed spheroidal bubble (Magnaudet & Mougin
2007). Basically, the momentum equations are written in velocity–pressure variables
in a general system of orthogonal curvilinear coordinates. The discretization makes
use of a staggered grid on which the equations are integrated in space using a
finite volume method with second-order accuracy. Advection and viscous terms
are evaluated through second-order centred schemes, whereas time advancement
is achieved through a second-order time accurate Runge–Kutta/Crank–Nicolson
algorithm. Finally, incompressibility is satisfied at the end of each time step by
solving a Poisson equation for an auxiliary potential.

A detail of the grid used in the present work is presented in figure 2 for the case
of a bubble with an aspect ratio χ = 2.25. The three-dimensional orthogonal grid is
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Figure 3. Evolution of the initial lift coefficient CL(t = 0+) with χ for Re = 1000. Solid line:
Miloh’s (2003) prediction for U = (U0 + αy)ex; dashed line: Miloh’s (2003) prediction for
U = (U0 + αx)ey; numerical results for both configurations: � Sr = 0.02, � Sr = 0.2. Note that
in the case of a sphere (χ = 1), the initial value of CL is 0.75 (Legendre & Magnaudet 1998).

generated by rotating a two-dimensional grid about the ex-axis with an angle φ. The
two-dimensional grid is obtained by inverting the equations defining the streamlines
ψ = const. and the equipotential lines η = const. of the potential flow generated by a
uniform stream around an oblate ellipsoidal cylinder. The grid employs Nb points to
describe half a meridian on the bubble surface, Nx points from one bubble pole to
the corresponding outer boundary along the ex-axis, Ny points along the ey-axis and
Nφ points in the azimuthal direction φ. The influence of these various numbers was
carefully checked to make sure that the results presented below are grid-independent
(see Adoua 2007 for more details). The outer boundary of the numerical domain
is a cylinder of radius R∞ and length 2(R∞ + a) (a is the minor semi-axis of the
bubble). The distance R∞ was chosen to avoid confinement effects in the wake region.
To properly capture the vorticity generated at the bubble surface, four rows of cells
were placed within the boundary layer whose thickness is O(bRe−1/2) at the bubble
equator. The influence of the thickness δ of the cells closest to the bubble surface
was also examined in detail. Finally, the computations were performed with Nb = 30,
Nx = 50, Ny = 70, Nφ = 64, δ = 0.003a and R∞ = 50a. In order to provide an extra
validation of the code in a situation relevant to the present problem, an additional
test was performed. This test consists in calculating the initial value of the lift force on
a spheroidal bubble suddenly inserted in an already established linear shear flow, i.e.
the value of CL at time t such that tU0/b � 1. The theoretical solution to this problem
was recently derived by Miloh (2003) for a weak inviscid shear flow (Sr � 1). We
considered two different geometrical situations, namely that studied in the rest of this
paper where the upstream flow is along the bubble minor axis, and that where it is
along one of the major axes. The first of these is obtained by setting U∞ = (U0 +αy)ex ,
while the second corresponds to U∞ = (U0 + αx)ey and produces a lift force in the
x-direction. Both situations were computed over the range χ ∈ [1.0, 2.7] for two
dimensionless shear rates, namely Sr = 0.02 and Sr = 0.2. As observed in figure 3,
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Figure 4. Evolution of the drag coefficient CD with the dimensionless shear rate Sr for
Re = 1500. �: χ = 1.5; �: χ =2.0.

the numerical results corresponding to Re = 1000 are in close agreement with the
theoretical prediction for both configurations.

4. Numerical results
We now turn to the computational results obtained in the range of moderate to

large Reynolds numbers. We shall essentially focus on the lift force which is the
most revealing global dynamic quantity in the present system. We shall also briefly
comment on the hydrodynamic torque experienced by the bubble, as it is also a direct
consequence of the non-zero shear. In contrast we shall not discuss the evolution of
the drag force FD in detail because this component does not reveal any unexpected
trends. Here it is sufficient to say that for Sr � 0.2, the shear has a negligible effect on
the drag force and the latter follows Moore’s prediction (Moore 1965) for large enough
Reynolds numbers (typically for Re > 600 when χ = 2.5). We also performed some
runs with higher shear rates. These runs revealed a discernible increase of FD with
the shear and, for large enough Re, we found the ratio FD(Re, Sr)/FD(Re, Sr = 0) to
be proportional to 1+β(χ)Sr2. An example of this behaviour is shown in figure 4. The
corresponding values of β are approximately 1.34 for χ = 1.5 and 0.85 for χ =2.0.
Combined with the result β(χ = 1) ≈ 0.55 obtained by Legendre & Magnaudet (1998)
for a spherical bubble, these findings suggest that β evolves non-monotonously with
the aspect ratio and reveal a particular sensitivity of the drag force to the shear for
χ ≈ 1.5.

4.1. Lift force

Figure 5 shows the evolution of the lift coefficient as a function of the aspect ratio
for four values of the Reynolds number. The numerical results are compared with the
theoretical solution CL = CL∞(χ) obtained for a weak inviscid shear flow by Naciri
(1992). This solution was derived by numerically inverting a Laplace equation to
determine the velocity disturbance induced by the distortion of the upstream vorticity
around the body. Naciri (1992) showed that the values of CL∞(χ ) very closely follow
those of the added (or virtual) mass coefficient, thus extending a result already known
for a spherical body (Auton 1987) (see also Wells 1996 for the connection between
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Figure 5. Lift coefficient CL versus the aspect ratio χ for Sr = 0.02 and � Re = 100;
� Re = 400; � Re = 1000; � Re = 1500; � Naciri (1992); — relation (4.1).

added mass and inviscid lift). A simple correlation fitting Naciri’s results with an
accuracy better than 1 % is

CL∞(χ) = 0.5 + 0.612(χ − 1). (4.1)

Figure 5 shows the existence of two markedly different regimes. For moderate aspect
ratios (χ � 2.0, approximately), the lift coefficient follows the behaviour predicted by
the inviscid solution. It increases gently with the aspect ratio and tends towards CL∞
when the Reynolds number is large enough. A detailed examination of the difference
CL(χ, Re) − CL∞(χ) reveals that throughout the range of parameters explored here,
the evolution of CL can be closely fitted by the simple correlation

CL(χ, Re) = CL∞(χ) − 0.16χ5/2/
(
1 + 0.0027Re3/2

)
. (4.2)

The above Re-dependent correction comes from the pressure contribution to the
lift force, which is by far dominant in the regime considered here. There is also a
small contribution provided by the normal viscous stress which behaves as Re−1. This
contribution should eventually dominate over that proportional to Re−3/2 as Re goes
to infinity. However, the prefactor of the Re−3/2 term is much larger, making this
term dominate the overall behaviour of the difference CL∞ −CL throughout the whole
range of Reynolds numbers covered by present computations.

For larger oblatenesses (χ � 2.0), the behaviour of the lift force changes
dramatically. The lift coefficient is found to decrease strongly when χ further increases
and then depends significantly on the Reynolds number. It even changes sign for
certain sets of parameters, indicating that a freely rising bubble with a sufficient
oblateness may migrate in the direction opposite to that followed by a spherical
bubble. Within the region where CL is found to be negative, there is a subregion
within which the lift force exhibits periodic oscillations but keeps negative values all
the time (see below). In such cases, the values reported in figure 5 were obtained by
time-averaging the instantaneous lift coefficient. Note that the evolution of CL with
the Reynolds number is not monotonic. Among the four values of Re considered in
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Figure 6. Phase diagram (χ,Re) showing the sign of the lift force for Sr =0.02. � CL > 0;
� CL < 0. The solid line indicates the frontier of the domain where Magnaudet & Mougin
(2007) found the axisymmetric wake of a bubble moving in a uniform flow to be unstable
(their investigation was limited to χ � 2.5).

figure 5, the decrease of CL with χ reaches a maximum for Re = 400, while bubbles
with both lower and higher Reynolds number are less affected.

Qualitatively similar evolutions were observed with several other values of Sr and
Re as well. Figure 6 summarizes these results in a phase diagram showing the sign
of CL in the (χ, Re) plane in the case of a low dimensionless shear rate, namely
Sr = 0.02. This diagram confirms that for χ < χ0(0.02) ≈ 2.2, the lift force is always
positive whatever be the Reynolds number. When the aspect ratio increases beyond
χ0, there is a finite range of Reynolds number, say [Re1(χ, 0.02), Re2(χ, 0.02)], within
which the lift force is negative. The lower critical Reynolds number, Re1, progressively
decreases as χ − χ0 increases, becoming of O(102) for χ = 2.7, while Re2 increases
much more rapidly with χ − χ0 and is about 2000 for the same χ . One can wonder
what happens when the Reynolds number is well beyond the upper critical value
Re2(χ, Sr). The answer is provided by figure 7 which shows how CL evolves with
χ for Re = 4000, a Reynolds number for which the boundary layer is still properly
resolved in the computations. The comparison with the inviscid prediction indicates
that, similarly to what we found for χ <χ0(Sr), CL tends towards the asymptotic
value computed by Naciri (1992) throughout the whole range of aspect ratios we
considered. In passing, we note in figure 7 that CL closely follows the evolution of
the added mass coefficient CM corresponding to a linear acceleration of the bubble
about its symmetry axis, namely CM (χ) = α0/(2−α0), with α0 = 2(1+ e2)(1− e cot−1e)
and e = (1 − χ2)−1/2 (Lamb 1945, p. 153). This numerical result confirms the equality
CL(χ) = CM (χ) already established by Auton (1987) (for a sphere) and Naciri (1992)
(for an oblate spheroid) in the limit Sr → 0, Re → ∞, and indicates that this equality
still holds for non-vanishing shear rates, at least up to Sr = O(10−1).

As soon as the aspect ratio exceeds the critical value χ0(Sr) and the Reynolds
number is in the range [Re1(χ, Sr), Re2(χ, Sr)], the lift force strongly depends on
the dimensionless shear rate, a behaviour at odds with that observed in the left part
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Figure 7. Lift coefficient for Re = 4000. � Sr = 0.02 and � Sr =0.2. �: theoretical prediction
by Naciri (1992); dotted line: relation (4.1); solid line: added mass coefficient CM (χ).
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Figure 8. Lift coefficient CL versus the Reynolds number Re for χ = 2.5 and: 	 Sr =0.008,
� Sr =0.02, 
 Sr = 0.1, � Sr =0.2.

of figure 5 (i.e. for χ <χ0(Sr)) or in the high-Re regime displayed in figure 7. This
sensitivity to Sr is emphasized in figure 8 which shows how the evolution of CL with
Re is affected by the shear rate for a given bubble geometry (χ = 2.5). In particular,
this figure reveals that the lift force does not reverse whatever Re for the highest two
shear rates Sr = 0.1 and Sr = 0.2. Actually, this was found to be true throughout the
whole range of χ we explored. In contrast, CL becomes negative beyond Re ≈ 150
for the lowest two values of Sr . In this case, the minimum of CL is reached for
Re ≈ 300 for both values of Sr . Quite surprisingly at first glance, the magnitude of
this minimum is found to increase strongly when Sr decreases. As mentioned above,
there is a subregion within which the lift force exhibits periodic oscillations about the
mean negative value reported in the figure. For instance, the lift coefficient computed
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in the case χ =2.5, Re = 400, Sr =0.008 oscillates between −2.5 and −4.5 with a
reduced frequency f b/U0 ≈ 0.17.

The variations of CL with Sr at low shear rate may be better appreciated in
figure 9 where we plotted the evolution of the lift coefficient up to Sr =1 for a given
Reynolds number and two bubble geometries. This figure confirms that CL is almost
independent of Sr when the lift force is positive (here for Sr � 0.05, approximately).
In contrast, a dramatic variation of CL with Sr is observed in the region where the
lift force is negative. A detailed examination reveals that CL varies essentially as Sr−1

in this regime. Turning back to the definition of CL (see § 2), this behaviour obviously
means that the lift force has become almost independent of the shear rate, making
the scaling we adopted for this force, and hence the definition of the lift coefficient,
inappropriate in this regime.

The influence of the relative shear rate on the reversal of the lift force is finally
summarized in figure 10 which shows the sign of CL in the (χ, Sr) phase plane for
a fixed Reynolds number, namely Re =400. At this specific Re, we see that CL does
not change sign whatever χ < 2.7 for Sr > 0.07. For lower shear rates, a finite value
of the critical aspect ratio χ0(Sr) is found to exist, which quickly decreases as Sr

decreases until it becomes almost independent of the shear rate for Sr � 0.04.

4.2. Torque

To complete this description of global dynamic quantities, let us briefly describe
the results concerning the torque acting on the bubble. Indeed, unlike a spherical
bubble, an oblate bubble experiences a non-zero torque when moving in a linear
shear flow. More precisely, all contributions to the surface stress are locally normal to
the surface in both cases (owing to the shear-free condition) so that a departure from
the spherical shape is required for the torque to be non-zero. We extended Naciri’s
theory to determine the torque experienced by an oblate bubble set fixed in a weak
inviscid linear shear flow (Adoua 2007). The result was obtained in the form of an
integral which was evaluated numerically. For χ � 3, the final result can be fitted with
an accuracy better than 1 % through the simple relation

CΓ ∞ = −0.27(χ − 1)0.7. (4.3)
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numerical simulations: � Re = 400, � Re = 1000, � Re = 1500.

Obviously the predicted torque is negative, corresponding to a rotation imposed by
the upstream vorticity ω∞ = −αez.

The computed variations of the dimensionless torque CΓ with the aspect ratio and
the Reynolds number are shown in figure 11 for Sr = 0.02. In line with the results
we obtained for the lift force, the evolution of CΓ exhibits two markedly different
regimes, depending on the aspect ratio. For χ � χ0(0.02) ≈ 2.2, the torque increases
monotonically with the aspect ratio and follows the general evolution predicted by
the analytical solution, the difference CΓ − CΓ ∞ decreasing as χ − χ0 increases. In
contrast, for χ � χ0(0.02), the torque starts decreasing sharply with χ and eventually
reverses for all Reynolds numbers we computed. Under such conditions, the bubble
tends to rotate in a direction opposite to that imposed by the upstream vorticity. For
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Figure 12. Typical isocontours of the normalized trailing vorticity ωxb/U0 in the (x, z)-plane
for χ = 2.25 and Sr =0.02. (a) Re = 200 (CL ≈ 0.22), (b) Re = 400 (CL ≈ −0.33), (c) Re =1000
(CL ≈ 0.41). The trailing vorticity is <0 within the darkest thread.

the highest aspect ratios we considered, say χ � 2.5, the values of the torque coefficient
exhibit some sort of convergence towards CΓ ≈ − 0.20 throughout the whole range
of Re. The phase diagram displaying the sign of the torque in the (χ, Re) plane (not
shown) is almost identical to that of figure 6, strongly suggesting that the reversal
of the lift force and that of the torque are two manifestations of the same physical
mechanism.

5. Discussion
5.1. The two mechanisms of streamwise vorticity generation

As is well established at least since Lighthill’s landmark work (Lighthill 1956), the lift
force on a non-lifting body of finite span is a direct consequence of the presence of a
pair of counter-rotating streamwise vortices in its wake. Hence the key of the observed
lift reversal has to be seeked in the mechanisms capable of generating such streamwise
vortices. Figure 12 displays the isosurfaces of the trailing vorticity ωx for a given χ

and Sr and for three different Reynolds numbers. Indeed this vorticity component is
organized in two counter-rotating tubes exhibiting mirror symmetry with respect to
the (x, y) plane, which is of course the symmetry plane of the undisturbed shear flow.
In line with the wake/lift force connection mentioned above, figure 12 shows that the
sign of the trailing vorticity in a given thread and that of the lift force follow each
other. In particular, this sign is observed to have reversed in figure 12(b) (Re = 400)
which, according to figures 5 and 6, corresponds to a set of parameters for which the
lift force is negative.

To better understand the change of sign of the trailing vorticity ωx , let us consider
the Helmholtz equation governing this vorticity component. Neglecting viscous effects,
we may write, (

D

Dt
− ∂Ux

∂x

)
ωx = (ω · ∇)csUx, (5.1)
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Figure 13. Sketch of the two mechanisms responsible for the lift force. Top: the ‘S’ mechanism
due to the surface vorticity induced by the shear-free condition; bottom: the ‘L’ mechanism
associated with the upstream vorticity.

where D/Dt = ∂/∂t + U · ∇ is the material derivative and (ω · ∇)csUx denotes the
contribution to the stretching/tilting term due to vorticity components lying in planes
perpendicular to the upstream flow. As the trailing vorticity is zero, far upstream
of the bubble, its generation is entirely due to the latter contribution. Ahead of the
bubble, the vorticity is ω∞ = −αez, so that (ω · ∇)csUx ≈ −α∂Ux/∂z. For z > 0 (resp.
z < 0), ∂Ux/∂z is > 0 (resp. < 0) because fluid particles have to accelerate to go around
the bubble (see figure 12). Therefore, (ω · ∇)csUx is < 0 for z > 0 (resp. > 0 for z < 0).
This is the classical Lighthill mechanism (Lighthill 1956; Auton 1987) (hereinafter
referred to as the ‘L’ mechanism) which corresponds to a lift force directed towards
positive y (figure 13, bottom).

Let us now consider the contribution to the stretching/tilting term (ω · ∇)csUx of
the vorticity ωs produced at the bubble surface. If the upstream flow is uniform, the
shear-free condition is known to generate a non-zero azimuthal vorticity component.
Therefore, in a cylindrical coordinate system (r, φ, x), the bubble surface r = r0(x)
may be considered as a vortex sheet with ωs = ωφ(x)eφ . When the upstream vorticity
ω∞ is non-zero, the above picture still holds approximately, provided the strength
of ωs is much larger than that of ω∞. The latter condition is always satisfied here
because the surface vorticity (normalized by b/U∞) is known to be of O(χ3) for large
enough Reynolds number and aspect ratio (Magnaudet & Mougin 2007), while the
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Figure 14. Schematic evolution of the lift force with the aspect ratio χ and the relative
shear rate Sr for a fixed, slightly supercritical Reynolds number Re > Rec1(χ).

normalized upstream vorticity is of O(Sr). This surface vorticity obviously results in
a contribution ωs · ∇Ux to the stretching/tilting term. As the potential flow around
the bubble is such that ∂Ux/∂r < 0 for r = r0(x), the surface vorticity must balance
the corresponding velocity gradient at the surface for the shear-free condition to be
satisfied. Therefore ωs is negative since it corresponds to an increase of the streamwise
velocity towards the flow interior. For z > 0 (resp. z < 0), the direction of the upstream
velocity gradient imposes ∇φUx < 0 (resp. > 0) (see figure 1), making the contribution
of ωs to (ω · ∇)csUx positive for z > 0 and vice versa (see figure 13, top). In what
follows, this mechanism associated with vorticity generation at the bubble surface will
be referred to as the ‘S’ mechanism.

The above analysis makes it clear that the respective contributions to the trailing
vorticity generation of the surface vorticity ωs and of the upstream vorticity ω∞ have
opposite signs. Then, based on (5.1), it could be tempting to seek an estimate of the
associated two contributions to the stretching/tilting term in terms of χ and Sr , so
as to derive a criterion aimed at predicting under which conditions the S mechanism
may become dominant. It is easy to see that such an attempt would necessarily be
unsuccessful. For instance, it would fail to explain why the generation of the lift force
is dominated by the L mechanism whatever χ and Sr when the Reynolds number is
large enough, or why the S mechanism has little influence on the lift force whatever
Sr for χ < 2.0. The reason, as will become clear in the next subsection, is that the
entire picture is dominated by finite-Reynolds-number effects which, under certain
conditions, result in an instability of the bubble wake.

5.2. Connection with wake instability in an unsheared flow

Wake instability of an oblate bubble held fixed in a uniform flow was studied in
detail using DNS by Magnaudet & Mougin (2007). This study revealed that the
axisymmetric wake is stable whatever be the Reynolds number for bubbles with an
aspect ratio χ less than the critical value χc0 = 2.21. Beyond this point, there is a
finite range of Reynolds number [Rec1(χ), Rec2(χ)] within which the wake is fully
three-dimensional and yields a non-zero lift force (for χ � 2.5, this range corresponds
to the domain limited by the solid curve in figure 6). In particular, the wake loses its
axisymmetry for Re =Rec1(χ) through a stationary supercritical bifurcation leading
to a steady wake made of two counter-rotating streamwise vortices. As the Reynolds
number still increases beyond Rec1(χ), the three-dimensional wake undergoes a series
of bifurcations, beginning with a secondary supercritical Hopf bifurcation leading to
a periodic vortex shedding regime. In this unsheared situation, the vorticity produced
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at the surface of the bubble by the shear-free condition is entirely responsible for
the generation of the lift force. Since the base flow exhibits a rotational symmetry
about the symmetry axis, the vorticity sign in each vortex is dictated by the initial
disturbance required to break the symmetry of the system.

The reason why the wake is unstable only within a finite range of Reynolds number
may be readily understood by examining how the surface vorticity ωs and the surface
vorticity flux ν∂ωs/∂n (∂/∂n denoting the normal derivative at the bubble surface)
evolve with Re for a given bubble shape. As reminded above, for large enough Re, the
former quantity is of O(χ3) once normalized by b/U∞. Combining this result with the
scaling of the surface boundary layer thickness, namely bχ−1Re−1/2 (Magnaudet &
Mougin 2007), the surface vorticity flux is found to be of O(χ4Re−1/2) once normalized
by U 2

∞/b. Therefore, the amount of vorticity that enters the flow through the bubble
surface tends to zero as Re becomes very large. Its χ4-dependency makes it grow
rapidly with the bubble aspect ratio and this growth may balance the Re−1/2 decay
at moderate to large Re, resulting in an O(1) surface vorticity flux responsible
for the wake instability. However, this decay eventually dominates and allows
the wake to recover its stability beyond the critical Reynolds number Re =Rec2(χ).
Note that the picture is completely different in the case of a solid body for which the
surface vorticity flux is of O(1) whatever be Re, owing to the O(Re1/2) growth of the
surface vorticity with the Reynolds number.

When a weak shear is present in the upstream flow (Sr � 1), the wake structure
behind a bubble with χ >χc0 and Rec1(χ) < Re <Rec2(χ) is essentially driven by the
same instability mechanism. However, the upstream shear ∇φUx now provides the
outer disturbance that selects the sign of the streamwise vorticity in the wake in a
deterministic manner. Therefore, in line with the above discussion, one expects the
sign of the lift force associated with a given sign of α in this regime to be opposite
to that which would result from the L mechanism. This is exactly what is observed
in figure 6. Also, as the negative lift force for such small Sr is almost entirely due to
the above wake instability mechanism and not to the shear, it scales with ρU 2

0 , and
not with ραU0 as initially postulated in the definition of the lift coefficient. Hence
this scenario explains why in the left part of figure 9 corresponding to small shears,
CL is observed to be proportional to Sr−1. Then, as Sr increases, so do the effects of
the L mechanism, while the vorticity production at the bubble surface and hence the
associated streamwise vorticity production is essentially unchanged. This is why in
the (χ, Re) plane the size of the domain within which the effect of the S mechanism
is dominant decreases. Finally, when the shear rate exceeds a critical value Src(χ, Re),
effects of the L mechanism become dominant, making the lift force recover its usual
sign, as observed in figure 10.

Returning momentarily to figure 6, we note that the lower critical Reynolds number
in presence of a weak shear, Re1(χ, Sr), and the corresponding critical aspect ratio,
χ1(Sr, Re), are slightly lower than their respective counterparts in the unsheared
situation, Rec1(χ) and χc1(Re) (see the black symbols just below the lower branch
of the solid line). This suggests that wake destabilization is favoured by shear, as
in the case of a solid sphere (Sakamoto & Haniu 1995). In contrast, as χ − χ0

increases, the upper Reynolds number bounding the domain where the lift force
is negative, Re2(χ, Sr), becomes significantly lower than its unsheared counterpart
Rec2(χ). This is because in this high-Re range, the negative lift force in the absence of
shear decreases as Re increases, since the wake is progressively recovering its stability,
making the corresponding time-averaged lift coefficient be a decreasing function of
Re −Rec1(χ) (Magnaudet & Mougin 2007). Hence this residual negative contribution
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may be cancelled well below Rec2(χ) by the positive contribution provided by the L

mechanism which is virtually independent of Re in this regime.
The general evolution of the lift force FL we just described is schematically depicted

in figure 14 which presents cross-sections of the phase space (χ , Sr , Re) at a given
Reynolds number Re slightly larger than the critical value Rec1(χ). At this particular
Reynolds number and for a vanishingly small shear rate, the sign of the lift force
reverses when χ exceeds χc1(Re) (obviously χc1(Re) � χc). Then for χ < χc1(Re), FL

results essentially from the L mechanism, so that its sign directly follows that of the
shear rate (figure 14 left). In particular, FL = 0 for Sr =0. In contrast, for χ >χc1(Re),
FL and Sr have opposite signs for small enough shear rates and there is a discontinuity
of FL for Sr = 0, corresponding to the fact that the non-zero lift force generated by
the wake instability changes sign when Sr goes from 0− to 0+. The lift force is
almost independent of Sr for such low shear rates. Then, as Sr increases for a given
supercritical χ , the magnitude of this ‘inversed’ lift force decreases, until FL recovers
the sign of Sr when the effect of the L mechanism becomes large enough. Conversely,
for a given shear rate (figure 14, right), FL first increases with the aspect ratio for
χ <χc1(Re), in accordance with the inviscid prediction. Then, for χ ≈ χc1(Re) and
for small enough shear rates, the magnitude of FL decreases sharply because effects
of the L and S mechanisms become of comparable magnitude. For each value of
Sr , there is a critical value χ1(Sr, Re) (with χ1(Sr, Re) slightly smaller than χc1(Re)
for small but finite Sr owing to the reason mentioned above) at which the lift force
vanishes for the Reynolds number under consideration; then the larger Sr, the larger
χ1(Sr, Re). Beyond this critical aspect ratio, the lift force reverses, being dominated
by the contribution of the S mechanism. Then, the smaller the Sr, the larger the
magnitude of the ‘inversed’ lift force for a given χ .

With the above characteristics of the S mechanism in mind, we can better
appreciate the difficulty of building a simple criterion capable of predicting the sign
of the lift force. The first problem encountered on this route would be the detailed
determination of the region of the phase space (χ, Sr, Re) within which the wake
is unstable. In the unsheared case Sr = 0, an indirect response was provided by
Magnaudet & Mougin (2007) in terms of the maximum vorticity ωmax at the bubble
surface. They showed that the unstable (χ, Re) region corresponds to that where
ωmaxb/U∞ exceeds a critical value that weakly increases with the Reynolds number.
Deriving the extension of this instability criterion when Sr �= 0 would require a
complete stability study in a three-dimensional phase space. We did not attempt
to achieve such an extensive study, owing to the large computational resources
it would require. However, would such an instability criterion be available, there
would still be a decisive step to achieve before a criterion for lift reversal could
be established. The reason is that the magnitude of the lift force due to the S

mechanism has to be known to be compared with that due to the L mechanism and
this cannot be achieved through simple dimensional arguments. For instance, a naive
dimensional estimate would suggest that the stretching/tilting term corresponding
to the S mechanism, ωφ∂U/r∂φ, is of O(χ3αU∞/b) = O(χ3Sr(U∞/b)2) because the
external velocity roughly varies by 2αb over one bubble diameter. However, this
cannot be the case because ∂U/∂φ is zero in the base flow in the limit Sr → 0.
Hence, in the unsheared case where the latter term is entirely responsible for the
streamwise vorticity generation (and thus for the non-zero lift force), this erroneous
estimate predicts no streamwise vorticity at all. Similarly, the stretching/tilting
term associated with the L mechanism, ωz∂U/∂z, is of O(αU∞/b) = O(Sr(U∞/b)2).
Hence the above flawed dimensional estimate suggests that the ratio of the S and
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L stretching/tilting terms is of O(χ3), i.e. it is independent of the shear rate. This
is obviously wrong since we know that for a given (χ, Re) the lift force is negative
for small shears but recovers its usual sign when Sr is large enough. Based on these
remarks, it is clear that the correct order of magnitude of the stretching/tilting term
associated with the S mechanism has to be evaluated by considering the magnitude
of ∂U/∂φ once the wake is unstable, i.e. the magnitude of the velocity gradient of
the unstable mode(s) in the azimuthal direction once the instability has saturated.
Clearly this quantity evolves as (χ − χc)

1/2, (Re − Rec)
1/2 and (Sr − Src)

1/2 close to the
threshold (χc, Rec, Src) of the instability (since the latter is supercritical, as shown by
Magnaudet & Mougin 2007 in the case Sr = 0) but its evolution further away from
the threshold is unknown. The above two key problems, especially the second one,
make the building of a simple criterion capable of predicting the reversal of the lift
force a highly non-trivial task.

5.3. Comparison with previous work

The clearest experimental evidence for the migration reversal of oblate bubbles
in a linear shear flow was reported by Tomiyama et al. (2002). These authors
released air bubbles into a Couette flow generated by rotating a belt immersed
in a tank filled with a mixture of glycerol and water. By varying the composition
of this mixture, they were able to record the migration of bubbles in liquids of
viscosity ranging from 18 to 90 times that of water. Several experimental limitations
and computational over-simplifications prevent a thorough quantitative comparison
between these experimental observations and present results. On the experimental
side, the most severe of these is that, owing to the polar nature of water, surfactants
are certainly present at the bubble surface. Therefore, the shear-free condition at
the gas–liquid interface is probably not fully satisfied which, for a given bubble
shape, contributes to increasing the vorticity produced at the bubble surface. On
the computational side, the assumption of a spheroidal shape with a perfect fore-aft
symmetry is only valid at sufficiently high Reynolds numbers. Actually, even for
Reynolds numbers of some hundreds, real bubbles have a quite flat front and a
rounded rear owing to small viscous effects. Despite these differences, a qualitative
comparison can be performed at least with experimental data obtained in the least
viscous oil, which corresponds to the situation in which bubbles have the largest
Reynolds number and the largest rising speed and hence have accumulated the
smallest amount of surfactant at a given altitude in the tank. The corresponding
data indicate that, for the weakest shear rate, i.e. Sr ≈ 0.05, a bubble with an aspect
ratio χ =2.06 experiences a small normal migration, whereas another bubble with
χ = 2.46 exhibits a clear ‘anomalous’ migration, both of them having a Reynolds
number in the range 95–120. A crude interpolation based on the lateral distances
travelled by the two bubbles at a given height in the tank suggests that the migration
reverses for χ ≈ 2.22. This critical aspect ratio is well in the range of χ where present
computations predict that the lift force changes sign in a weak shear flow (see
figure 6). Nevertheless, a more relevant comparison may be obtained by taking into
account the slight fore-aft asymmetry of real bubbles in the way suggested by Zenit
& Magnaudet (2008). These authors pointed out that the most relevant geometrical
property of a spheroidal bubble with respect to surface vorticity generation is its
maximum curvature, reached on the equator. They noticed that given this fore-aft
asymmetry, the perfect oblate spheroid that best approaches the maximum curvature
of the real bubble has an aspect ratio about 10 % higher than that directly deduced
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from the overall bubble shape. Hence the corrected critical aspect ratio that can
be inferred from the experiments is about 2.45. On the other hand, the prediction
reported in figure 5 indicates that the lift force on a bubble rising at Re = 100 reverses
for χ ≈ 2.55 for a shear rate Sr =0.02. Given the various uncertainties mentioned
above, this comparison indicates that the present predictions and the experimental
data are in good agreement for this specific set of parameters. It would of course
be of great interest to pursue this comparison for higher Reynolds number but the
required experimental data do not seem to be available yet.

Let us finally point out that the migration reversal phenomenon was also
observed, both experimentally (Tomiyama et al. 2002) and computationally (Ervin &
Tryggvason 1997; Sankaranarayanan & Sundaresan 2002), in liquids of much higher
viscosity. The associated flow conditions correspond to much lower Reynolds numbers
(typically Re = O(10)) and much higher shear rates (typically Sr = O(1)), while the
Weber numbers are typically of O(1). For reasons discussed in § 2, the bubble shapes
observed in this flow regime are far from oblate spheroids and do not even exhibit
axisymmetry because most of the deformation is due to the shear rather than to
the slip, as in low-Re flows. For this reason, the physical mechanism that leads to
the inversed migration under such conditions has nothing to do with that explored
here. Actually, it is known that low-Re buoyant deformable bubbles moving in a
shear flow experience a deformation-induced lift force which pushes them towards
the high-velocity side of the shear flow (Magnaudet, Takagi & Legendre 2003). This
mechanism subsists in the low- to moderate-Re regime and combines with the usual
inertial migration mechanism that tends to push bubbles in the opposite direction.
Therefore, when the deformation exceeds some threshold, the former effect dominates,
leading to the migration reversal observed in the aforementioned experiments and
computations.

6. Conclusions
We computed the force and torque experienced by an oblate bubble of prescribed

shape held fixed in a linear shear flow in the regime of moderate to high Reynolds
numbers and weak relative shear rates. This simplified model is a valid representation
of real bubbles rising in low-viscosity liquids for Re = O(102 − 103), We = O(1) and
Sr � 1. The numerical results confirm a striking behaviour already reported in several
laboratory experiments. That is, when the bubble aspect ratio is large enough, the
direction of the bubble lateral migration may reverse compared to that observed
for a spherical bubble and to that predicted by inviscid theory for any bubble
oblateness. A similar reversal was observed for the torque experienced by the bubble.
The flow conditions for this lift and torque reversal to occur were clarified in terms
of the bubble aspect ratio, rise Reynolds number and dimensionless shear rate. In
particular, it was found that the lift reversal may happen only for large enough aspect
ratios, typically χ > 2.2, and weak enough shear rates, typically Sr < 0.1, the Reynolds
number having to be larger than 102, approximately (actually the critical shear rate
(resp. Reynolds number) increases (resp. decreases) with the bubble oblateness). Few
complete experimental data are available in the regime considered in this work but
they do support present predictions in terms of both critical aspect ratio and Reynolds
number.

Not surprisingly, the analysis of the flow structure revealed that the origin of this
force/torque reversal is directly linked to the sign of the trailing vorticity which is
concentrated within two counter-rotating threads in the bubble wake. We showed that
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the trailing vorticity induced through the usual tilting mechanism by the azimuthal
vorticity generated at the bubble surface by the shear-free condition and that resulting
from the classical Lighthill mechanism have opposite signs. Therefore, when the
streamwise component of the stretching/tilting term is dominated by the vorticity
produced right on the bubble, the lift force changes sign. The required conditions
for this scenario to occur are of course fulfilled when the bubble wake becomes
unstable and the outer shear is weak. Under such conditions, the essential role of the
outer shear is to select the sign of the vorticity within each of the two streamwise
vortices that set in downstream of the bubble, whereas the strength of the lift force
associated with this pair of vortices remains almost independent of this outer shear.
This mechanism explains why, for weak enough shears, the range of aspect ratios and
Reynolds numbers for which the reversal of the lift force is observed almost coincides
with that within which the axisymmetric wake of a bubble embedded in a uniform
stream is unstable to infinitesimal disturbances.
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